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Introduction
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Additional information can 
be extracted from satellite 
imagery if we take advantage 
of motions in fine-temporal 
resolution data! 

Can you see the cyclonic rotation 
of Hurricane Michael?

This number represents the image 
refresh rate

At 15 & 10 min, all we can really see 
is translation of the eye

At 5 min, slower cyclonic motion is 
observed at the cloud-tops

At 1 min & 30 sec, the fast-moving 
eye wall motions are observable!
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• As satellite imagery improves, our subjective 
ability to identify motion improves, which should 
translate to improved objective identification

• Recent studies have found diagnosis and 
forecasting value in mesoscale-flow derived with 
passive high spatial, temporal, and spectral 
resolution satellite image sequences (Wu et al. 2016; 

Apke et al. 2016; 2018; Velden et al. 2017; Oyama et al. 2018; Otsuka et al. 
2019; Stettner et al. 2019; Sandmæl et al. 2019; Apke et al. 2020;
Mecikalski et al. 2020 In Review.)

• Many new and advanced so-called “optical flow” 
techniques for extracting more motion from 
image sequences have been developed, which we 
currently do not take advantage of!

• The goal of this ongoing work is to bring cutting 
edge optical flow derivation techniques and their 
benefits to satellite research and operations
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All WindsOFDMWsVisible

Introduction

Optical Flow Definition: 

“The distribution of apparent velocities of 
movement of brightness patterns in an image”  

-(Horn and Schunck 1981)

“Sparse” Optical Flow Definition: 

Motions from only selected targets within 
the image are derived (e.g Derived Motion 
Winds; DMWs; Bresky et al. 2012)

“Dense” Optical Flow Definition: 

Motions are derived at EVERY image pixel
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 Applications OUTSIDE atmospheric sciences (to name a few):

Optical Flow Applications

Sources (top left to bottom right): media.giphy.com, medium.com, androidpolice.com, Tao et al. (2012), metro.co.uk, gifs.com

Self-Driving Cars

Automated Surveillance

Video Stabilization

Recoloring Facial Recognition

Gesture Tracking



• Assumptions within Dense Optical Flow derivation algorithms are better when 
displacements are small and natural cloud variability (from evaporation and 
condensation) between images is low (Fortun et al. 2015)

• Targets are easier to track with shorter time-steps between images

• The Geostationary Operational Environmental Satellite (GOES)-R successfully 
launched in November, 2016, carries the Advanced Baseline Imager (Schmidt et al. 2017)

• Spatial Resolution: Heritage: ~1 km visible Next Generation: ~500 m VIS, ~2 km IR

• Spectral Resolution: Heritage: 1 VIS, 4 IR Channels, GOES-R: 2 VIS, 14 IR Channels

• Radiometric Resolution: Heritage: 10 Bit Image, GOES-R 12 Bit

• Temporal Resolution- Heritage: Up to 5 minute, GOES-R: Routine 1-min, up to 30 sec

• There are new geostationary satellites with similar capabilities to GOES-R coming 
online around the globe

• Himawari AHI, Meteosat Third Generation FCI, FY-4A
5

Why Now?
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1) Derivation of Optical Flow
 Background (and Current Techniques in Satellite Meteorology)

 Assumptions Made

 Methods for Computation

 Strengths/Weaknesses of Current Approaches

 Dense Optical Flow Derivation Techniques

2) Satellite Meteorology Applications of Optical Flow Algorithms
 More Winds!

 Inter-Frame Interpolation (Pseudo Super Rapid Scan Satellite Imagery)

 Feature Tracking (BIG for machine learning projects)/Cloud-Top Cooling

 Miscellaneous

3) Validation of Optical Flow

4) Additional work by the Mesoscale Winds Working Group

Talk Outline
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 In the 1960’s, Ted Fujita’s 
group were among the first 
to research gridding, 
navigation and quality 
control of satellite imagery 
required for cloud-drift 
wind derivation from 
satellite imagery

 In 1966, ATS-1 was 
launched, providing the 
first geostationary satellite 
images for weather analysis
 “The clouds move – not 

the satellite.” (Suomi 
1969) 

 In the 1970’s, the first winds 
derivation systems 
emerged, and were 
automated over the next 
few decades(e.g. Schmetz et 
al. 1993; Velden et al. 1997; 
Bresky et al. 2012)

Brief Background
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Current Motion Derivation Methods

 DMWs (also called Atmospheric Motion 
Vectors) are derived from a sequence of 
(typically 3) GOES Images

 Step 1: Identify target in VIS/IR/WV Imagery
 Step 2: Height Assign target with IR and WV 

data in comparison to Numerical Weather 
Prediction (NWP) Fields (Nieman et al. 1993)

 Step 3: Forecast displacement and search for 
target in next image (minimize sum-of-square 
error), resulting displacement is the AMV 
(DMWs then cluster tracked results over a 
larger target area)

 Step 4: (Optional) Quality control with NWP 
and Neighboring AMVs for synoptic scale 
flow

 Important: These techniques struggle in 
image regions w/ motion discontinuities (i.e. 
transparent or multi-layer clouds), 
illumination changes, rotation/deformation, 
lack of texture

Figure 1. Schematic of AMV derivation concept using the Heritage 
feature tracking algorithm.  For three images, this is performed twice, 
forwards (like that shown above) and backwards in time, and the two 
AMVs are averaged to produce a final motion estimate (Adapted from 
Bresky et al. 2012).
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Current Motion Derivation Methods

This approach fails if Any one of these happen



10

Optical Flow Derivation Techniques
 Optical Flow Algorithms work by minimizing “energy” produced by violation of predetermined constraints

 Remember the AMV example?  The local energy is:

𝐸 𝑢, 𝑣 = σ𝑥,𝑦∈𝑁𝑖
𝐼𝑡𝑎𝑟𝑔𝑒𝑡 𝑥, 𝑦, 𝑡 − 𝐼𝑠𝑒𝑎𝑟𝑐ℎ 𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + ∆𝑡

2
, where 𝐸 𝑢, 𝑣 → 𝑒𝑛𝑒𝑟𝑔𝑦,

𝑁𝑖 → 𝐸𝑣𝑒𝑟𝑦 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

 𝑢 and 𝑣 are estimated by testing a valid search region for the minimum value of 𝐸 𝑥, 𝑦

 In most operational algorithms that do this, energy is estimated for the surrounding pixels, and quadratic 
interpolation is performed to estimate the sub-pixel-based u, v

 The above assumes that brightness changes only as a function of motion u and v 

 This assumption is called Brightness Constancy constraint

 It tends to fail when clouds condense or evaporate!

 When optical flow is derived using only pieces of the image, it is called a “Local” approach

 Advantages: fast, you can identify which targets give you the best solutions, and it can retrieve large displacements

 Disadvantages: Not computable everywhere!



12

Global Optical Flow Techniques
 Local techniques still breakdown without some other constraint when there is no texture

 Another approach is to minimize energy over the entire image called a “Global Technique”

 Horn and Schunck (1981), for example, minimize:

𝐸 𝑢(𝒙), 𝑣(𝒙) = ඵ

Ω

𝐼 𝒙 + 𝑼, 𝑡 + ∆𝑡 − 𝐼 𝒙, 𝑡 2 + 𝛼 𝑆𝐶 𝑑𝒙

Ω → 𝐸𝑣𝑒𝑟𝑦 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒

SC = Smoothness Constraint (or “regularizer”) -> |∇𝑢|2 + |∇𝑣|2, 𝛼 = constant weight of SC

 To solve the above, the brightness constancy constraint is linearized (subscripts are partial derivatives) …

𝐼 𝒙 + 𝑼, 𝑡 + ∆𝑡 − 𝐼 𝒙, 𝑡 → 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡

 …and the Euler-Lagrange equations are used (𝐸(𝑢 𝒙 , 𝑣 𝒙 ) minimized when):

𝜕𝐸

𝜕𝑢
−

𝑑

𝑑𝑥

𝜕𝐸

𝜕𝑢𝑥
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𝑑

𝑑𝑦

𝜕𝐸

𝜕𝑢𝑦
= 0
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𝜕𝑣
−

𝑑

𝑑𝑥
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Global Optical Flow Techniques
 For Horn and Schunck (1981), that 

results in this sparse system of linear 
equations:

𝐼𝑥
2𝑢 + 𝐼𝑥𝐼𝑦𝑣 − 𝛼∇2𝑢 = −𝐼𝑥𝐼𝑡

𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦
2𝑣 − 𝛼∇2𝑣 = −𝐼𝑦𝐼𝑡

 We want the above in terms of 

𝑨 Ԧ𝑥 = 𝑏

 The trick is that x -> all flow values in 
the image (see image)

 Horn and Schunck solve with Gauss-
Seidel iterations (though there are 
now many sparse matrix solver 
libraries out there today)

 Note: there are limitations to 
linearizing brightness constancy!

 This (and local) methods do not yet 
account for motion discontinuities!

Source: Meinhardt-Llopis, E., J. Sánchez Pérez, and D. Kondermann, 2013: Horn-Schunck Optical Flow with a 

Multi-Scale Strategy. Image Process. Line, 3, 151–172, doi:10.5201/ipol.2013.20.

𝑨 Ԧ𝑥 𝑏



• Most optical flow techniques depend on some 
sort of linearization of brightness and/or 
gradient constancy to minimize energy 
equations, e.g.

𝐵𝐶 → 𝐼 𝒙 + 𝑼, 𝑡 + ∆𝑡 = 𝐼 𝒙, 𝑡 ≈

0 = 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 + 𝐻𝑂𝑇

𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠 → 𝑑𝑒𝑟𝑖𝑣𝑖𝑎𝑡𝑖𝑣𝑒𝑠

• Linearization introduces problems, for 
example, let’s assume:

0 = 𝐼𝑥𝑢 + 𝐼𝑡

This implies we can solve for 𝑢 = −𝐼𝑡/𝐼𝑥

• When displacements are large and non-linear, 
most optical flow derivation methods fail!

• There are solutions to this problem…
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Flow Linearization

𝐼𝑥 ≈ 0.27 𝐼𝑡 ≈ 0.078
Estimated 𝑢 = −0.29, Actual 𝑢 = −0.5
𝐼𝑥 ≈ 0.27 𝐼𝑡 ≈ −0.35
Estimated 𝑢 = 1.29, Actual 𝑢 = −2

𝑇𝑖𝑚𝑒 1𝑇𝑖𝑚𝑒 2



• When displacements are large, many optical 
flow algorithms use a “Coarse-to-fine” 
technique to guess initial motion while 
keeping constraint linearization

• Step 1) Subsample image to a coarse enough 
resolution such that all motions are ~ < 1 pixel

• Step 2) Estimate optical flow at the coarsest 
resolution

• Step 3) Upscale optical flow estimated to next 
finest resolution, use it as initial guess to the 
motion

• Step 4) Repeat step 3 until you reach the native 
resolution

• Disadvantage: Coarse initial guesses will 
smooth out smaller (in space) motions! 

• Next-generation satellites enable us to use 
dense optical flow methods with new rapid 
scanning rates! 15

Handling Large Displacements



• Recent optical flow research resolves large displacements, as well as issues related to occlusions, image 
noise/blur using Machine Learning/Neural Network techniques

• Advantages: Can resolve motions for highly non-linear sequences, end models are very computationally 
efficient 

• Disadvantages: Training datasets may not be representative of real motion, they can struggle at resolving 
small “outlier” motions, resolving why flows are incorrectly derived can be very difficult

Source of Images: Fischer, P., and Coauthors, 2015: FlowNet: Learning optical flow with convolutional 

networks. Proc. IEEE Int. Conf. Comput. Vis., 2015 Inter, 2758–2766, doi:10.1109/ICCV.2015.316.

Synthetic Training Datasets

Testing Datasets

Network Design
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Handling Motion Discontinuities
 For Horn and Schunck (1981) heavily penalizes the presence of motion discontinuities

𝐸 𝑢(𝒙), 𝑣(𝒙) = ඵ

Ω

𝐼 𝒙 + 𝑼, 𝑡 + ∆𝑡 − 𝐼 𝒙, 𝑡 2 + 𝛼 𝑆𝐶 𝑑𝒙

 Black and Anandan (1996) show that a simple change to the energy equation allows multiple layers to be 
preserved, so

𝐸 𝑢(𝒙), 𝑣(𝒙) = ඵ

Ω

𝜌𝑑 𝐵𝐶 + 𝛼 𝜌𝑠 𝑆𝐶 𝑑𝒙

 𝜌𝑑 and 𝜌𝑠 are robust functions designed to soften the penalization of large outliers on the energy 
function, and are typically set to the Charbonnier penalty:

𝜌𝑑 𝑥2 = 𝜌𝑠 𝑥2 = 𝑥2 + 𝜀2, 𝑤ℎ𝑒𝑟𝑒 𝜀2= 0.0001

 Black and Anandan’s equation can be solved with the same Euler Lagrange equation minimization process, 
though typically the sparse matrix problem must be solved multiple times to account for nonlinearities 
associated with the robust functions

 A good example: Brox, T., A. Bruhn, N. Papenberg, and J. Weickert, 2004: High accuracy optical flow estimation 
based on a theory for warping. 2004 Eur. Conf. Comput. Vis., 4, 25–36.
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Figure 2. (Left) Example Brox et al. (2004) optical flow algorithm on 5-min GOES-16 visible imagery over central Arizona on 5 July 2018
(Right) Subjectively identified outflow boundary pixels tracked with old optical flow scheme (red/orange dots) compared to new scheme (blue/yellow 
dots).  Note the scheme in blue and yellow preserves motion discontinuities.



• At CIRA we are testing 10 separate optical flow derivation techniques, and 
continue to develop new systems that leverage next-generation satellite fields

• Samples from two optical flow systems are shown here

• Farnebäck (2001) from OpenCV (opencv.org)

➢ Window: 5 x 5 pixels, local optimization window: 25x25 pixels

➢ Pyramid Depth- 3 levels, Scaling- 0.5

➢ Smoothing Std. Dev.- 1.0, Farnebäck Gaussian Smoothing Used

➢ Sets 𝒖 = [0,0] when no texture is available to find a solution! 

• A modified Sun et al. (2014) approach (more on the next slide)

• Applied to sequences and pairs of Geostationary and Low-Earth Orbiting 
Imagery

• Typically track clouds/smoke/dust in Geostationary

• Slower features in Low-Earth Orbiting Imagery (e.g. Sea Ice/Fire Lines)
19

Optical Flow at CIRA



 New optical flow methods do handle Motion discontinuities, illumination changes, and texture-less 
regions, Brox et al. (2004) for example minimizes this with a coarse-to-fine strategy:

𝐸 𝑢(𝒙), 𝑣(𝒙) = ඵ

Ω

𝜌𝑑 𝐵𝐶 + 𝛾 𝐺𝐶 + 𝛼 𝜌𝑠 𝑆𝐶 𝑑𝒙

BC = Brightness Constancy -> 𝐼 𝒙 + 𝑼, 𝑡 + ∆𝑡 − 𝐼 𝒙, 𝑡 2

GC = Gradient Constancy -> ∇𝐼 𝒙 + 𝑼, 𝑡 + ∆𝑡 − ∇𝐼 𝒙, 𝑡 2 , 𝛾 = weight of GC
SC = Smoothness Constraint -> |∇𝑢|2 + |∇𝑣|2, 𝛼 = weight of SC

The 𝜌𝑑 𝑥2 = 𝜌𝑠(𝑥
2) = 𝑥2 + 𝜀2 are “Robust Functions”

𝐸𝑆𝑢𝑛 𝑢, 𝑣, ො𝑢, ො𝑣 = 𝐸 𝑢, 𝑣 + 𝜆𝑐 𝒖 − ෝ𝒖 2 + 𝒗 − ෝ𝒗 2 + 𝜆𝑛෍

𝑖,𝑗

෍

(𝑖
′
,𝑗′)𝜖𝑁𝑖,𝑗

𝑤𝑖 𝑗
𝑖′𝑗′

ො𝑢𝑖 𝑗 − ො𝑢𝑖′ 𝑗′ + ො𝑣𝑖 𝑗 − ො𝑣𝑖′ 𝑗′

𝑤𝑖 𝑗
𝑖′𝑗′

= 𝑒^ −
𝑖 − 𝑖′ 2 + 𝑗 − 𝑗′ 2

2𝜎1
2 −

𝐼𝑖,𝑗 − 𝐼𝑖′𝑗′
2

2𝜎2
2

Coupling Term (penalizes 
deviations from auxiliary field ෝ𝒖, ෝ𝒗 )

Weighted Median Smoothing Term 
(within a neighborhood of 𝑁𝑖,𝑗)

Brox Equation

• Resolves motion discontinuities
• Has aux. flow field which we can set to known values
• Weighted median can be based on GOES-R fields
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• We will use a method by Sun et al. (2014), minimizing:

Mitigates motion caused 
by illumination changes

Preserves motion 
discontinuities in image field

Sun Et Al. (2014) Optical Flow



 New optical flow methods do handle Motion discontinuities, illumination changes, and texture-less 
regions, Brox et al. (2004) for example minimizes this with a coarse-to-fine strategy:

𝐸 𝑢(𝒙), 𝑣(𝒙) = ඵ

Ω

𝜌𝑑 𝐵𝐶 + 𝛾 𝐺𝐶 + 𝛼 𝜌𝑠 𝑆𝐶 𝑑𝒙

BC = Brightness Constancy -> 𝐼 𝒙 + 𝑼, 𝑡 + ∆𝑡 − 𝐼 𝒙, 𝑡 2

GC = Gradient Constancy -> ∇𝐼 𝒙 + 𝑼, 𝑡 + ∆𝑡 − ∇𝐼 𝒙, 𝑡 2 , 𝛾 = weight of GC
SC = Smoothness Constraint -> |∇𝑢|2 + |∇𝑣|2, 𝛼 = weight of SC

The 𝜌𝑑 𝑥2 = 𝜌𝑠(𝑥
2) = 𝑥2 + 𝜀2 are “Robust Functions”

𝐸𝑆𝑢𝑛 𝑢, 𝑣, ො𝑢, ො𝑣 = 𝐸 𝑢, 𝑣 + 𝜆𝑐 𝒖 − ෝ𝒖 2 + 𝒗 − ෝ𝒗 2 + 𝜆𝑛෍

𝑖,𝑗

෍

(𝑖
′
,𝑗′)𝜖𝑁𝑖,𝑗

𝑤𝑖 𝑗
𝑖′𝑗′

ො𝑢𝑖 𝑗 − ො𝑢𝑖′ 𝑗′ + ො𝑣𝑖 𝑗 − ො𝑣𝑖′ 𝑗′

𝑤𝑖 𝑗
𝑖′𝑗′

= 𝑒^ −
𝑖 − 𝑖′ 2 + 𝑗 − 𝑗′ 2

2𝜎1
2 −

𝐼𝑖,𝑗 − 𝐼𝑖′𝑗′
2

2𝜎2
2

Coupling Term (penalizes 
deviations from auxiliary field ෝ𝒖, ෝ𝒗 )

Weighted Median Smoothing Term 
(within a neighborhood of 𝑁𝑖,𝑗)

Brox Equation

• Resolves motion discontinuities
• Has aux. flow field which we can set to known values
• Weighted median can be based on GOES-R fields
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• We will use a method by Sun et al. (2014), minimizing:

Params. that 
can be tuned

Sun Et Al. (2014) Optical Flow



Little to no texture in 
the ocean at 0.64-μm 
channel

Approaches that fail 
here: 
• Farnebäck
• Patch Matching & 

Cross Correlation 
(DMWs/AMVs)

• Lucas and Kanade

Auxiliary field was 
used where “ocean” 
pixels were detected, 
set to stationary, yields 
unmatched texture in 
passive geostationary 
satellite motion fields

Approaches that would 
over-smooth: 
• Farnebäck
• Brox et al. (2004)
• Horn and Schunck
• Bruhn et al. (2005)
• Black and Anandan

(1994)

Modified Sun et al.Farnebäck

23
Figure 3. Cumulus optical flow example over the Pacific Ocean of GOES-17 0.64-μm 1-min imagery.



Applications
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Instruments:
GOES-16
GOES-17

Himawari
SNPP

NOAA-20

Sequences (loops)

Pairs (Multi-
Satellite views)

Winds

Feature Tracking

Feature Tracking

Stereoscopy

Level 2 Products

Flow Fields

Vertical Wind Profiles

Interpolation

Extrapolation

Cloud-Top Cooling

Cloud-Top Height

Interpolation

Sea-Ice Motion

Level 3 Products
Dense Optical Flow 

Derived With…

Typically using GEO
VIS/IR imagery

GEO products, inc. 
GeoColor, CLAVR-x

LEO-LEO or 
LEO-GEO 

VIS/IR/DNB

Pending FundingFunded Future Work

Key:

NOAA A33: ACES HAI
PI: Steve Miller



• Dense optical flow meso-
winds products see vertical 
growth in clouds as 
acceleration in cloud-top 
horizontal motion, see color 
scale below (where 
grey=stationary)

• Hodograph (below) indicates 
GFS analysis wind speed and 
direction as a function of 
height for this scene

0.64-μm Visible Sun Optical Flow



2) Image Interpolation

Dense optical flow enables 
temporal interpolation of 
satellite imagery (e.g. 1-min 
GeoColor updates from GOES 5-
min CONUS data)
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CIRA-Sun Method -70

-90

Sea-ice texture 
highlighted with 
CIRA-Sun method

Color-Shaded Optical Flow ComparisonDNB Imagery

Rotation is resolved 
with larger glaciers

W

E

S

N

Color/saturation dependent on 
direction/speed of derived motion



Cloud-Top Cooling

Developing Deep 
Convection

Cooling Derived with 
Dense Optical Flow

Cooling Missed without 
Dense Optical Flow

*Time-rates of change can dramatically complement the native 
16-channels on GOES-R ABIs for AI/Machine Learning



• Application development is closely tied to optical flow validation

• There are two key methods to validate optical flow (e.g. Baker et al. 2011):

1) Validation with Wind Measurements

➢ In many applications, it is assumed that optical flow = winds

➢ Winds can be validated with in situ measurements (rawinsondes) or remote sensing tools 
(e.g. Doppler Radar/Lidar) wind profilers nearby in space/time

➢ Key disadvantage: Not all brightness features move w/ the wind motion

o E.G. gravity waves, surface features, outflow boundaries

2) Validation with Image Interpolation

➢ In many other applications, it may be beneficial to better track features

➢ Optical Flow estimates can be combined with a simple interpolation algorithm to estimate 
intermediate frames and evaluate feature tracking performance

o Performance is determined by comparing estimated image to a known image typically 
with a gradient normalized sum-of-square error

o In most cases, this can be done w/ 1-min and 30-sec mesoscale sectors

36

Optical Flow Validation

Citation: Baker, S., D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, 2011: A database and 

evaluation methodology for optical flow. Int. J. Comput. Vis., 92, 1–31, doi:10.1007/s11263-010-0390-2.



Initial Validation Results

Farnebäck

A B C

A
B

C
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Figure 3. GOES-17 Ch-02 0.64 μm imagery plotted with 
Farnebäck optical flow.  Below is a time series comparison of 
the Farnebäck optical flow approach validation when 
compared with the DAWN wind profiler on board the DC-8, 
whose path is traced on the satellite image.  

• With visible information, dense flow field is 
VERY close to Doppler wind-profiling Lidar 
data (DAWN) w/ cloud-top assumed at SNR > 
10 (errors ~< 5 m/s)

• Spikes in vector differences occur when 
lidar/optical flow disagree on discontinuity 
locations



Validation

Algorithm Bias (m s-1)* Mean Vector Difference (m s-1)*

Sun et al. (2013) (IR Ch-7) 1.623 4.04

Modified-Sun et al. (2013) (IR Ch-7) -0.798 3.101

Farnebäck (2001) (visible imagery) -0.597 2.447

-> Modified 1-min (2 Pyr. levels) -0.114 2.272

-> 3 min | 5 min | 10 min -0.15| 0.15 | -1.91 2.327|2.068|4.38

DMW’s (IR Ch-7) from Daniels et al. 
(2018)**

< |-0.5| ~2.9-4.5

DMW’s (visible Ch-2) from Daniels et 
al. (2018)**

< |0.5| ~2.8-3.7

* Values for Sun et al., modified Sun et al. and Farneback assume winds were derived at Lidar derived cloud-
top height and should be considered preliminary, no height assignment was performed yet
** Values for DMWs were height assigned and compared to rawinsondes, not DAWN
Daniels, J., W. Bresky, A. Bailey, A. Allegrino, S. Wanzong and C. Velden, 2018: Introducing Atmospheric Motion Vectors Derived from the GOES-
16 Advanced-Baseline Imager.  14th Annual Symposium on New Generation Operational Environmental Satellites, Austin, TX, Amer. Meteor. Soc. 38

Table 1. Initial dense optical flow validation statistics when compared to NASA DAWN Wind Profiling Lidar

• 1-min MVD can be lower w/ 
INR correction

• 10-min requires additional 
modification, doesn’t 
perform as well as finer 
temporal resolutions
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Goals of this working group: 
o Increase collaborations between those doing work on meso-AMVs 
o Leverage collaborations to share and test new approaches, algorithms, and applications on common datasets 
o Identify maturing approaches and applications that may be suited for operationalization 
o Actively engage and collaborate with potential users of mesoscale AMVs 

Meso-Winds Working Group Slide Courtesy of 
Jaime Daniels (NOAA/NESDIS/STAR)



Wind heights:

200-100 mb

100-50 mb

+ Peak low level rotation

Courtesy: 
Bob Rabin (NOAA/NSSL)



One Project Objective: 

- Demonstrate new OF methodology for producing AMVs in hurricane environments to 

augment and enhance existing techniques; Focus on the very cold and relatively coherent clouds in 

the Central Dense Overcast (CDO) region of TCs where conventional AMV techniques can struggle.  

Nearing end of methodology/product development stage

- Proof of concept completed through case studies and publications

- Successful completion of real-time demo with GOES-16 during 2020 TC season

- Data quality/validation studies ongoing

- Data assimilation activities underway with modeling partners (i.e. HWRF model)

Readying product for transition to Enterprise system implementation and testing with STAR partners  

Project Goals: Develop ultrahigh spatiotemporal atmospheric motion vector (AMV) 

datasets derived from the new-generation GOES-R series ABI meso scans targeting 

tropical cyclones (TCs), and optimize their assimilation into TC forecast models.

UWisc.-CIMSS Contributors:

Christopher Velden, David Stettner, Steven Wanzong, Will Lewis

OF Applications to Tropical Cyclones 

NOAA/University Collaboration Partners: 

AMV Development - Robert Rabin, NSSL;  Jaime Daniels, NESDIS/STAR  

Hurricane DA - Jason Sippel, NOAA/HRD;  Xuguang Wang, OU 

Stakeholders and End Users:  NHC, CPHC, JTWC TCFOs; NCEP/EMC TC models



Product Example: Hurricane Delta
(OF vectors in magenta)

Courtesy: 
Chris Velden (UW-CIMSS)



Machine Learning based Optical Flow for Quantifying Motion

Vandal, T. & Nemani, R. (2020). “Optical Flow for Intermediate Frame Interpolation of Multispectral Geostationary 

Satellite Data”.  1st ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems. 

- Deep learning methods are widely 
accepted for optical flow in the 
computer vision community

- Research is underway to test neural 
networks with false color imagery to 
retrieve optical flow within clouds 

- Applied to temporal interpolation of 
geostationary imagery to generate 1-
minute full-disk data

- Proposal selected by NASA ROSES Earth 
Science Research from Operational 
Geostationary Satellite Systems Program 
(Thomas Vandal, Will McCarty)

Courtesy:  Thomas Vandal (NASA Ames)

False Color Image Wind Speed
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A look into the future
• While GOES-17 was in the checkout phase, a 

~6 s rapid scan test was performed over hail-
producing t-storms

• MYTH: Motions can only be derived from 
satellite data if they exceed 1-pixel

• FACT: Optical flow algorithms, including 
sparse cross-correlation based AMVs/DMWs 
can derive sub-pixel motions.  The actual 
“speed limit” is determined by the horizontal 
gradient in image brightness and the 
radiometric resolution of the image***

• Farnebäck (2001), for example, produces 
realistic motions when two frames only ~6 
seconds apart are used!

• FACT: Optical flow algorithms perform poorly 
when image changes occur that are NOT 
related to movement (clouds change more 
between images with lower scan rates!)***Pre-Operational Data***

Courtesy:  Dan Lindsey (NOAA)



To Summarize…
• We reviewed methods for sparse and dense optical flow computation

• GOES-R enables assumptions within dense optical flow retrieval algorithms!

• Introduced a dense optical flow method which leverages GOES-R fields for better 
flow solutions 

• Demonstrated several applications of dense optical flow fields

• Winds/Feature Tracking/Interpolation

• Showed early validation results in comparison to Doppler Wind Lidar data

• Winds products have comparable accuracy to state-of-the-art algorithms

• Accuracy degrades as temporal resolution is coarsened ( ≥ 10 min)

• Future plans include 

• More validation and testing in a variety of meteorological phenomena

• Continue development on current algorithms and image interpolation 
schemes (NOAA ROSES A33- ACES-HAI; PI- Steve Miller) 45
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Thank You For Listening!

For additional questions, contact:

Jason Apke

jason.apke@colostate.edu

3925A West Laporte Ave. Fort Collins, CO 80523-1375

mailto:jason.apke@colostate.edu
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EXTRA SLIDES

For additional questions, contact:

Jason Apke

jason.apke@colostate.edu

3925A West Laporte Ave. Fort Collins, CO 80523-1375

mailto:jason.apke@colostate.edu


Doppler Aerosol Wind (DAWN) Lidar System
PI: Michael J. Kavaya, NASA LaRC

DAWN Capabilities
• 2.053 micron wavelength, 80-100 mJ/pulse. High 

sensitivity to aerosol backscatter, enables excellent 
vertical resolution, accuracy, and atmospheric coverage

• Provides vertical profiles of LOS wind, horizontal wind 
vectors, and aerosol backscatter

• Optional number of azimuth angles (up to 12) permits 
trade of wind variability determination vs. horizontal 
resolution

• Optional number of laser shots averaged for each LOS 
wind profile permits trade of atmospheric coverage vs. 
horizontal resolution

• Data may be processed multiple ways to provide 
various combinations of vertical and horizontal 
resolution, atmospheric coverage, and accuracy

•

• Successful field campaigns: Polar Winds I and II, 
Convective Processes Experiment (CPEX), ADM Aeolus 
Cal/Val Test Flight Campaign

30

+45

+22.5

-45

-22.5

0

Nadir
+45

+22.5

Attribute Value 

Airplanes Flown DC-8 and UC-12B 

Solid-State Laser Crystal and Wavelength Ho:Tm:LuLiF, 2.053 Microns 

Laser Architecture Master Oscillator Power Amplifier (MOPA) 

Pumping Source, Wavelength, Duration Laser Diode Arrays (LDA), 792 nm, 1 ms 

Laser Pulse Energy E, Rate f, FWHM Duration t 80-100 mJ, 10 Hz, 180 ns 

Telescope Diameter D 15 cm 

Light Detection Material, Technique InGaAs, Coherent, Dual-Balanced 

Scanner Diameter, Type, Deflection 15 cm, Step-Stare Rotating Wedge, 30° About Nadir 

Eye Safety Safe at any Range When DAWN Closed Up for Flight 

Pointing Knowledge Technique Dedicated INS/GPS on Lidar; dry land returns 

LOS Wind Measurement Precision < 1 m/s 

Vertical Resolution 60 m 

 

Precision = < 1 m/s



Initial Validation Results- Sun

Sun et al. 
No Aux Field

A B C D E

A
B

C

D

E Sun et al. 
Ground/Ocean = 0 m/s
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Figure 3. GOES-17 Ch-07 3.9 μm imagery plotted with 
Sun optical flow vectors tuned without and with an 
auxiliary stationary flow field for clear/ground/ocean 
pixels.  Also shown is a color shaded optical flow plot, 
where hue is determined by direction, and saturation by 
the speed of the flow.  Below is a time series comparison 
of the Sun optical flow approach validation when 
compared with the DAWN wind profiler on board the 
DC-8, whose path is traced on the satellite image.  

• Points B and D are over the ocean, which requires 
auxiliary tuning to get stationary motion

• Tuning yields correct stationary motion at B and D
• Noise before A and during E still needs tuning
• Field behaves well around point C, errors < 3 m/s

A
B

C

D

E Sun et al. w/ higher 
smoothing



Validation: 4/25/2019 Part I

Visible 0.47 μm Sun/Apke OF Farnebäck OF

 Dense Optical Flow approaches handle motion of 
closed-cell convection very well, w/ vector differences 
around ~1.5 m s-1 , Bias < 0.1 m s-1

 Approaches struggle to match DAWN wind speeds in 
multi-motion cirrus (after 22:40 UTC)

 Cirrus is at DAWNs highest range gate, so it is possible 
actual motion was higher in altitude than what was 
measured

 Sun/Apke Optical Flow Algorithm shows signs of 
mixing multiple motions, which could be a side effect of 
computational efficiency steps

 Improvements will be made by leveraging multi-
channel approaches and CLAVR-x cloud-top heights



• Derived from dense optical flow, deep 
convection cloud-top divergence highlights 
the most intense updrafts in image loops

• From a large sample of updrafts, 
overshooting tops with higher CTD were 
more likely to be associated with deep, 
severe weather producing convection

B



A

Developing Deep 
Convection


